Foto zdroj: Cult of Pedagogy
“If it hasn’t been in the hands, it can’t be in the brain.” This is a quote I see every morning when I drop my daughter off at preschool. Even though she hasn’t studied sensory integration theory or neuroscience, my daughter’s teacher knows this from experience.
My biology teacher in high school embraced this idea as well. I remember more from his class than any other I’ve taken because he fully embraced multisensory learning — learning that integrates multiple senses at one time. We created diagrams of a cell body, acted out the different genetic combinations of Mendel’s pea plants, drew out and recited aloud the steps in the Krebs cycle, and used PTC paper to determine if we were a taster or non-taster.
The brain is an integration machine. Research shows that there’s a synergistic effect to multisensory learning: when more than one sense is accessed during a learning experience, learning is boosted, even from a very young age (Benstead, 2020). For example, when an infant sees and touches an object, the brain lights up significantly more than when the infant only sees the object. This is also true when the infant sees, touches, and hears an object compared to just seeing and touching the object. This highlights the importance of multisensory learning in order for the brain to make connections and integrate information. And if you’ve ever been around a toddler for more than 10 minutes you’ll experience this first hand — they want to move and touch and talk while they perform a task.
Sensory integration, in so many ways, sets the foundation for learning. The sensory systems must work in concert to facilitate things such as regulation, attention, sitting upright, writing, reading, organizing materials, and engaging socially, to name a few. When we engage students in multisensory learning we’re not only enhancing their learning experiences and brain integration; we’re also facilitating the development of these foundational skills. This is why things “being in the hand” is so important, particularly during the early stages of learning. Yes, when we hold a flower in our hands and smell it, we are learning about the softness of the petals, the sweetness of its smell, the delicateness of how it must be held. But we are also sustaining our attention, organizing our body movements, and sharing the experience with others much more than if we were simply looking at a picture of that flower in a book.
When we break down the sensory systems it is truly remarkable how they serve as the building blocks to regulation, engagement, exploration, safety, movement, social interaction, and brain integration. By applying some basic principles of sensory processing to your teaching, you’ll remove unnecessary barriers and boost learning in some pretty significant ways.
Getting Acquainted With Our 8 Sensory Systems
Many people have heard of the five external sensory systems: touch (tactile), sound (auditory), sight (visual), taste (gustatory), and smell (olfactory), but there are actually three more internal sensory systems that drive much of our behavior: vestibular, proprioceptive, and interoceptive. Once you know more about the breadth and depth of the sensory systems and how they impact students’ ability to learn and engage, you will have another lens through which to view behavior and ask questions to support all of your learners. Plus, you can start to use sensory information to your advantage at different points during the day, both for you and for your students.
- Auditory input is what we hear. This input helps us determine spatial awareness, engage socially, maintain attention, feel a sense of environmental safety, and sustain balance.
- Visual input is what we see. We use this information for environmental awareness, eye-hand coordination, balance, sense of safety, orientation in space, depth perception, and social engagement (like reading non-verbal cues).
- Tactile input is what we touch and feel. This sense allows us to build self-regulation; gain emotional security; manipulate objects; learn about texture, pain, and temperature; and establish body awareness.
- Gustatory input is what we taste. We use this information to know what is safe and desirable to eat and drink.
- Olfactory input is what we smell. We use it when we eat and drink, for environmental safety, and for emotion related to our memories.
- Proprioceptive input is how we perceive our body in space; it is, essentially, our body awareness. It helps us facilitate grading of force, hold and manipulate objects, build self-regulation, and navigate the environment (without bumping into things).
- Vestibular input is how we perceive our relationship to gravity and orientation in space. We use this information for balance, muscle tone, maintaining alertness and attention, motor coordination, sustaining an upright posture, and visual orientation.
- Interoceptive input is how we perceive our internal needs. We use this sense for emotional awareness, bodily needs, and sense of safety.
Celý článek čtěte na webu www.cultofpedagogy.com